

The Sun and space weather

Panagiotis Evangelopoulos IA - FORTH

Co-funded by the Erasmus+ Programme of the European Union

The Sun: the closest star

The Moon has a radius 400 times smaller and is 400 times closer than the Sun

Photo on the visible part of spectrum sunspots

The Sun: the closest star

Photo on the ultraviolet prominences

The Sun temperature

Surface: ~6000 degrees

Core: ~15 million degrees

Twice the temperature of a light bulb filament

Capable of nuclear reactions (Hydrogen bomb: 1952 USA)

Sun – Jupiter - Earth

How the Sun was born

- Initial cloud mostly of hydrogen
 - □ Initial size~150 light years (ly)
 - □ Initial mass~ 10,000 solar masses
- The cloud due to gravity "shrinked" and "broke" into small denser clouds
 - One of these clouds has a size of 0.5 ly~300,000 AU (AU is the mean distance between the Sun and the Earth)
 - □ Mass ~50 solar masses
- The cloud rotates so it becomes more flattened
- □ At its center, density increases => pressure & temperature increase
- □ Nuclear reactions begin (10^7 degrees) => The Sun is born
- □ The Solar "wind" clears the cloud, leaves the planets

Solar structure

<u>Sunspots</u>

The sunspots up close

The sunspots are colder regions than the surrounding photosphere, hence they appear darker. Due to their very strong magnetic field, hot plasma is transported to the surrounding area.

<u>11-year solar cycle</u>

NASA/NSSTC/Hathaway

Variation in the number of sunspots

ISES Solar Cycle Sunspot Number Progression

How the sunspots form

How the sunspots form

opyright @ Addison Wesley

Solar wind

□ Electrically neutral mixture of ions and electrons

(plasma: H+, ⁴He++, e⁻)

□ temperature: 100.000 K

- □ speed: 400-800 km/sec
- □ density: 5 particles/cm³
- □ It needs 2 to 4 days to reach the Earth

Eugene Parker (1927-2022)

2022-03-25 20:00:00

<u>Πηγή:</u> https://www.swpc.noaa.gov/products/wsa-enlil-solar-wind-prediction

Space weather

It's all the changes in the plasma, the magnetic field and the electromagnetic radiation in the space environment which now affects the technological systems in space and on Earth and possibly also the living beings.

Solar flare

Abrupt and rapid increase in the intensity of electromagnetic radiation at many wavelengths

Energy release: 10²²-10²⁵ Joule Hydrogen bomb: 10¹⁷ Joule

Aurora borealis from Athens (November 2003) Credit: Antonis Agiomamitis

The "mother" of all flares (1/9/1859)

It was accompanied by an intense magnetic storm the next day

Carrington's design

Coronal Mass Ejection, CME

- They are sometimes associated with flares
- They travel at 3 times the speed of the solar wind (~1,500 km/s)
- They contain protons, e- and strong magnetic fields
- Slze: ~50 Sun Rays
- They create a shock wave

They appear

- 1 every 5 days during periods of solar maximum
- 1 per 45 days during periods of solar minimum

Credit: NASA/Walt Feimer

Πηγή: science.nasa.gov

Geomagnetic field

Credit: ESA and AOES medialab

Conjunction of Sun and Earth

Input of large amounts of energy from the solar wind.

Credits: NASA's Scientific Visualization Studio

Aurora borealis

"Bad" Space weather [NOAA]

> Radio blackouts [source: flares] -> sharp increase in intensity mainly in X-rays

They affect telecommunications and satellite navigation

Solar radiation storms [source: flares,CMEs] -> caused by a flow of energetic ions

They affect the operation of satellite and biological systems

> Geomagnetic storms [source: CMEs] -> global decrease in the intensity of the geomagnetic field

They affect the operation of various technological systems more broadly

Technological effects

- Complete lack of communication with the satellite
- Damage to the surface part of the satellite from UV, X-rays (stress of the thermal control material, damage to the solar panels, etc.)
- Problems due to high-energy particles (instrument read error, satellite computer processor stuck)

(Image credit: Eddie Irizarry/Sociedad de Astronomia del Caribe (SAC))

✓ **1847-1859**: destruction of telegraph cables in England

✓ Ιούλιος 1982: railway breakdowns in Sweden

 \checkmark **13 Μαρτίου 1989:** the power grid collapsed in Quebec, Canada, for 9 hours.

Biological effects

Biological effects (ICRP, 1991)

Acute effects (Malfunctions of organs, eye cataracts, etc).

Deterministic, threshold doses

– Late effects (DNA damage, mutations, cancer)

Stochastic, no threshold doses

Accumulated dose from GCR is a serious problem for long voyage scenarios (Mars), even at solar maximum

Bruce McCandless

Astronauts and flight crew passengers at high latitudes are most exposed

Astronauts have about 20 minutes to enter the ISS after a high-energy particle event warning

Høre comçs the sun. -The Beatles

