

Gravitational Wave Astronomy Module

V. Boschi (INFN, EGO)

Frontiers has been funded within the framework of the European Union Erasmus+ programme

GW Astronomy

The Origin of the Solar System Elements

http://www.astronomy.ohio-state.edu/~jaj/nucleo/

ESA/NASA/AASNova

Virgo and LIGO sensitivity

Imagine to drop a glass of wine (or water) in the ocean.....

Ocean Surface (S):

70% x 4π x R_terra^2 = 0.7 x 4 x 3.14 x (6.37e6 m)^2 ~ 3.6e14 m^2

Volume of the glass (V): ~ 0.25e-3 m^3

Increase of the global sea level: h ~ V / S ~ 1e-18 m

This is the level of sensitivity we need to reach with GW detectors !!

VIRGO superattenuator

It's able to attenuate the seismic motion of the mirrors by more than a factor 10¹² (a million of a million times)

Standard filter

Suspended mirror

00

- Discovering and building a Michelson interferometer
- The pendulum
- Earthquake Interferometer
- Finding Black Holes in a Chirp
- Gravitational Wave Noise Hunting
- Control (Class)room
- VIRGO Virtual Visits

http://www.frontiers-project.eu/gravitational-wave-astronomy/

GW Demonstrators Build an interferometer in your class!

- We will assemble a Michelson interferometer using a small construction kit developed by NIKHEF, the Dutch National Institute for Subatomic Physics, a high energy and astroparticle physics laboratory in Amsterdam, Netherlands, which participates to the Virgo experiment.
- The NIKHEF interferometer costs around € 70 + VAT. The same interferometer can also be built with simple optical components.

GW Demonstrators The pendulum

 In this lesson we will explore the pendulum, a very simple mechanical system but at the same time an extremely powerful tool for exploring physical phenomena such as oscillations, gravity, the transmission of vibrations and also the concepts of speed, acceleration, energy and resonance.

GW Demonstrators Control (class)room

Whether you are detecting gravitational waves or measuring colliding particles, the control room is where all the magic happens !!

GW Demonstrators Control (class)room

Using simply a set of PCs or Raspberry PIs you can have all the data shown in the control room in your class !!

M DMS				TF Mode	0h 19m 19s)	ITF Sta	te: LOW_N	OISE_3_SQ	Z (Od 7h 32r		UTC: 201						
Injection	SIB1_IP		SIB1_BENCH		SIB1_B		R	SIB1	_Vert	SIB1_			SIB1_Guard			SIB1_Electr	
	MC_IP		MC_PAY		MC_B				Vert		MC_TE		MC_Guard			MC_Electr	
	Laser		LaserAmpli		LaserCh		ler SL_Temp		Controller		RFC						
	MC_Power						A IMC_AA		_GALVO		MC_F0_z					BPC_Electr	
Detection			QPD_B1p		QPD		B2 QPC		_B5		OMC		PicoDisable			Shutter	
	SDB1_IP		SDB1_LC				DB1_BR		SDB1_Vert		SDB1_TE		SDB1_Guard			SDB1_Electr	
ISC	B2_8MHz_DPH	B4_	B4_56MHz_DPHI		DARM_UGF		UN	LOCK	SSFS	_UGF	UGF FmodEr					EQ_Mode	
	B1p_DC	B4_	B4_112MHz_MAG		B7_DC		B8_DC		LSC_rms			SC_rms	50Hz_FF		-	ViolinModes	
Suspensions	BS_IP		BS_F7		BS_PAY		BS_BR		BS_Vert			BS_TE		BS_Guard		BS_Electr	
	NI_IP		NI_F7		NI_PAY		NI_BR		NI_Vert			NI_TE		NI_Guard		NI_Electr	
	NE_IP		NE_F7		NE_PAY			E_BR			rt NE_T		NE_Gua		NE_Electr		
	PR_IP		PR_F7		PR_PAY			R_BR		Vert	PR_TE		PR_Guar		d PR_Electr		
	SR_IP		SR_F7		SR_PAY			R_BR		Vert	SR_TE		SR_Guar		d SR_Electr		
	WI_IP		WI_F7		WI_PAY		WI_BR		WI_Vert			WI_TE		WI_Guard		WI_Electr	
	WE_IP		WE_F7		WE_PAY		WE_BR		WE_Vert			WE_TE		WE_Guard		WE_Electr	
Environment	CB_Hall		MC_Hall		TCS_zones		NE_Hall		WE_Hall			WindActivity		Seismon		BRMSMon	
	INJ_Area						Q_Room		ernal	Dead	Channel	Lights		SeaAd	tivity	WAB	
Infrastructures	ACS_CB_Hall	ACS_TCS_	CHILRC	ACS_TE		DAQ_R	oom ACS	_EE_Room	ACS_N		ACS_IN		S_DET		CS_NE	ACS_WA	
	UPS_TB	UPS_C		UPS_MC		JPS_NE		JPS_WE	FlatCha				S_WE		5_CB_CR	ACS_CO	
SBE	EIB_SBE		2_SBE		B2_LC		IEB_SBE	SNE	B_LC		B_SBE	SWEB_L				SPRB_LC	
TCS	NE_RH						NI_CO2_Laser		WI_CO2_Las		ser					TCS_Electr	
sqz			Squeezer					SQZ_	Shutter		Cohe_CTRL		SQZ_Inj		Rack_TE		
Vacuum	LargeValves		Clean_Air		TubeStations		TubePum		MiniTower		Tu	rboLinks	RemDryPM			VAC_SERVO	
	Pressure		CompressedAir		TowerServers		TowerPumps		CryoTrap		02	Sensors	s Tank				
VPM	DetectorSEnvironm	ne Contr	ControlRoom N		Minitowers			Inje	Injection				uspension Va				
	DetectorMoni	toring	Di	ataCollect	lection		Storage		DataAcc		ccess		Automation		DetChar		
DAQ-Computing	Latency				Timing			ng_rtpc		ig_dsp		st_DAC		DCs_TE		Daq_Boxes_T	
	Domains	DMS_r		DetOp_			servers				tchBoxes	INF_devic		ENV_d		VAC_device	
Calib_Hrec	CalNE	CalW		CalINJ		CalBS		CalPR	PCalN	١E	PCalWE		IOFT		NCAL	NoiseInject	tion
ITFOnCall	Software	Al	Te	mperatur	resAl		InjectionAl			UpsAl	psAl		GeneratorAl				
DetChar-Ex.Trigger	Hrec_RANGE	BNS	G	Alert		GRB_AI	ert	KAM	ILAND_A	LAND_Alert		SNEWS_Alert		STATE_VECTOR			

GW Demonstrators Earthquake interferometer

How can you use Virgo data ? Control room data constitute a powerful tool to understand how the environment interact with the detector

- What is the effect of the wind on Virgo ?
- What is the effect of the sea waves ?
- What happen when an earthquake reach the Virgo site ?

GW Demonstrators Finding black holes in a chirp

Using LIGO/Virgo data, students will learn how to determine the masses and the radius of a binary system, to identify the two objects as black holes, and what are the fundamental properties and parameters of a black hole.

$$\mathcal{M} = \left[\frac{5K}{(8\pi)^{8/3}}\right]^{3/5} \frac{c^3}{G}$$