

REINFORCE REsearch INfrastructures FOR Citizens in Europe

Gravitational Waves *Recent News and Results*

REINFORCE Summer School 11 July 2022

> Massimiliano Razzano ⁽¹⁾ on behalf of REINFORCE Consortium & WP3 GWitchHunters team

> > (1) - University of Pisa

© Copyright 2019 – This project has received funding from the European Union's Horizon 2020 project call H2020-SwafS-2018-2020 funded project Grant Agreement no. 872859

Welcome to GWitchHunters

The nature of spacetime

The spacetime is curved

- General Relativity by Einstein (1915)
- "Spacetime tells matter how to move; matter tells spacetime how to curve" (J. Wheeler)

What is gravity?

- No longer a force a-là Newton
- Consequence of curvature of spacetime

Credits: T Pyle/Calteh/MT/LIGO

What are Gravitational Waves?

Ripples in spacetime

- Travel at speed of light
- Distort spacetime
- Polarizations

How they are generated?

- Accelerating masses
- Orbiting astrophysical bodies
- Explosions
- Violent astrophysical phenomena

Credits: LIGO/Caltech

Stellar evolution

Credits: ESA

The Menu of expected GW sources

Transients

Coalescence of compact binary systems (NSs and/or BHs)

- Known waveforms (matched filter with template banks)
- Only source class detected so far

Core-collapse of massive stars

Uncertain waveforms

Continuous

Rotating neutron stars

- Quadrupole emission from stellar asymmetry
- Continuous and periodic

Stochastic background

• Continuous, due to unresolved sources/Big Bang relics

REINFORCE How to detect gravitational waves

• Extremely tiny signals

- Typical GW sources induce a deformation of 10⁻¹⁸ m over a length of ~ few km
- High background noise!

Laser interferometers

- Exploiting interference between orthogonal laser beams
- Typical km-long scale + Fabry-Perot cavities
- Frequency range ~20-20000 Hz
- Advanced methods to reduce noise
- Detectors working as a network

Not just black holes

- GW170817 : Neutron Star coalescence
 - First event of its kind
 - Observed by LIGO and Virgo
 - Observed counterparts by electromagnetic telescopes
 - First multimessenger observation

Mixed Pairs

• 10 & 15 January 2020

- Neutron star + Black hole
- Masses inferred from wave shape

Credits: Carl Knox, OzGrav-Swinburne University.

The story so far

Advanced LIGO and Virgo completed 3 joint runs

- O1 (H1+L1) Sep 12, 2015 Jan 19, 2016
- O2 (H1+L1+V1) Nov 30, 2016 Aug 25, 2017
- O3a (H1+L1+V1) Apr 1 Oct 1, 2019
- O3b (H1+L1+V1) Nov 1, 2019 Mar 27, 2020

Detection method

- km-scale Michelson interferometers
- Fabry-Perot cavities
- Hardware and software methods to suppress noise

Better sensitivity

- ~10x wrt previous generation (2002-2011)
- ~1000x more volume \rightarrow ~1000x higher rates

Credit: Caltech/MIT/LIGO Lab

Our observing scenario

Run schedule

- Each run longer and more sensitive
- Commissioning breaks (e.g. 1 month in O3 in Oct 2019)
- Adv Virgo joined in O2
- Oct 2019 KAGRA signed MoU with LIGO/Virgo

Abbott et al, (LVK collaborations) 2020, LRR, 23, 3

Our observing scenario and O3

The 3rd GW Event Catalog

Cumulative events up to O3

The GW Event Catalogs

- **GWTC-1**:
 - 11 events from O1+O2
- **GWTC-2**:
 - +39 events (total 50 events from O3a)
- GWTC-2.1:
 - +8 candidates (revised analysis) 3 from GWTC-2 with <50% of being astrophysical
- **GWTC-3**:
 - + 35 events from O3b (total 90)

Masses in the Stellar Graveyard

M. Razzano

Gravitational-Wave Transient Catalog

Detections from 2015-2020 of compact binaries with black holes & neutron stars

Upgrades

"Observing Scenario" paper Abbott et al, (LVK collaborations) 2020, LRR, 23, 3

Commissioning

Noise glitches

Noise is not stationary

- Transient events can happen
- Not related to astrophysical source, but local disturbances
- Different timescales/frequency ranges
- Affect data quality, stability and GW detection

Noise hunting & characterization is critical

- Detect and classify glitches to find their origin and remove them
- Hardware/software origin
- Glitches have complex time-frequency morphologies
- Data from auxiliary sensors important to understand origin
- Machine learning offers promising approach (e.g. George&Huerta2017, Razzano&Cuoco 2018)

Glitch in LIGO L1 detector during GW170817 Abbott et al 2017

Glitch morphologies

Virgo strain channel

Koi Fish

M. Razzano

14

The Challenges of GWitchHunters

- Classify, locate glitches and find correlations with Aux Channels
- See tomorrow's presentation

REINFORCE REsearch INfrastructures FOR Citizens in Europe

Join the community

© Copyright 2019 – This project has received funding from the European Union's Horizon 2020 project call H2020-SwafS-2018-2020 funded project Grant Agreement no. 872859